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eventually the Doppler-broadened line spectrum vanishes. The influence

of water vapor is discussed separately.

Attenuation and dispersion rates for path models are evaluated by

computer routines. Examples of computer plots are given as a function

of altitude for homogeneous, zenith, and tangential path geometries.

Molecular resonances of minor atmospheric gases are discussed briefly,

as is the noise which originates from the 0 2-MS.
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MOLECULAR ATTENUATION AND PHASE DISPERSION
BETWEEN 40 AND 140 GHz

FOR PATH MODELS FROM DIFFERENT ALTITUDES

Hans J. Liebe and W. M. Welch

ABSTRACT

Radio wave propagation in the 40 to 140 GHz band

through the first hundred kilometers of the atmosphere

is strongly influenced by the microwave spectrum of

oxygen (O 2 -MS). A unified treatment of molecular
attenuation and phase dispersion is formulated. Results

of molecular physics are translated into frequency,
temperature, pressure, and magnetic field dependencies

of a complex refractive index. The intensity distribution

of the 0 2 -MS undergoes several changes with increasing
altitude: when h < 10 km, all lines, but one at 119 GHz,

are merged to a continuum spectrum under the influence

of pressure-broadening; when h > 30 km, a line spectrum

with isolated Lorentzians is displayed; when h > 40 km,
Zeeman-splitting of each line occurs due to the influence
of the earth' s magnetic field; for h > 60 km, a Voigt pro-

file governs the transition to a Gaussian line shape and
eventually the Doppler-broadened line spectrum vanishes.
The influence of water vapor is discussed separately.

Attenuation and dispersion rates for path models are
evaluated by computer routines. Examples of computer
plots are given as a function of altitude for homogeneous,
zenith, and tangential path geometries. Molecular reso-
nances of minor atmospheric gases are discussed briefly,
as in the noise which originates from the 0 2 -MS.

Key words: Atmospheric transmissivity; atmospheric
millimeter wave propagation; complex refractive
index of air; oxygen microwave spectrum.

*The authors are with the Institute for Telecommunication Sciences,
Office of Telecommunications, U. S. Department of Commerce,
Boulder, Colorado 80302.



1. INTRODUCTION

Much of the future growth of telecommunications will occur by

extending the radio spectrum into the millimeter wavelength range (30 to

300 GHz). As shown in a recent review by Thompson et al. (1972), the

successful exploitation of this largely unused portion of the spectrum

hinges on the accurate and complete account of all propagation effects.

The greatest obstacles to the use of such high frequencies are attenuation

and phase dispersion caused permanently by the clear air and inter-

mittently by rain and clouds. This report addresses the use of the fre-

quency spectrum 40 to 140 GHz for radio propagation through the clear

atmosphere and discusses in detail ultimate limitations due to air mole-

cules of which oxygen is a major species. The microwave spectrum of

oxygen, abbreviated 02-MS, dominates the transfer properties of air

throughout the specified frequency range, while molecular effects of

water vapor influence them to a lesser extent. Roughly forty lines of the

O2-MS contribute to the atmospheric spectrum. Each line has individual

pressure and temperature dependencies, and the overlapping of lines

below 30 kilometers changes the structure of the spectrum drastically

with altitude.

Of prime concern to system engineers are signal degradations

(amplitude and phase distortions; interferences) and the minimum

transmitted pulse length supported by the propagation medium. These

concerns lead in Section 2 to the formulation of a complex transfer

function T(1, 0) for a well-mixed, homogeneous atmosphere. Spectros-

copic knowledge of the 02-MS is translated into engineering terms of

attenuation a , phase-delay o , and dispersion A0 rates for atmospheric

conditions up to altitudes of 100 kilometers. In Section 3 these results

are applied to calculate transfer properties of path models through the

U. S. Standard Atmosphere (1962). Cumulative attenuation A and phase

2



dispersion AT along slanted ray paths through the total (inhomogeneous)

atmosphere are evaluated by computer calculations. An example is

shown in Figure 1 for one-way zenith path attenuation between 49 and

72 GHz from different initial altitudes. A graphical presentation is the

best introduction to atmospheric transmission and shielding properties

due to the 0 2-MS.

As part of spectrum management, a first step was taken to

allocate bands for specific applications through an international agree-

ment (ITU, 1971). For the first time several bands have been reserved

exclusively for passive systems. A clear understanding of the 02-MS

is required to promote the most efficient use of the millimeter wave

spectrum which, just as its lower frequency counterpart, is a saturable

resource. Reliable knowledge of the transfer function T provides the

basis for designing systems which take advantage of unique molecular

transmission and emission properties associated with the relatively

stable dry part of the atmosphere. The 02-MS affords interference

resistance and transmission security for broadband radio communica-

tions. Optimum system performances can be assured by tradeoff

studies between environmental degradations and component limitations.

The following key phrases give examples of telecommunication

applications which incorporate 0 2 - MS properties:

(a) Shielding of broadband satellite -to-satellite links from

ground interferences (e. g. , Crane, 1971).

(b) Secure high-altitude communication in the valleys of the

O2-MS with special channel characteristics (balance

between transmission and shielding, phase -dispersive

pass-band, phase keying, etc.).

(c) Restricted range, variable range, and local distribution

broadband communication systems (e.g., Murray, 1971).
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(d) Aircraft collision avoidance by means of -60 GHz beacons

and "threshold" receivers (M. L. Meeks, private communi-

cation, 1969).

(e) Restrictions of radar range (Blake, 1972).

(f) Occultation experiments between orbiting satellites for

studies of atmospheric structures.

(g) Absolute differential phase measurements between frequency

pairs on either side of the 0 2-MS over line-of-sight paths

for correction of radio distance (MITRE, 1965; Thompson,

1968; see Section 3. 1. 1).

More applications will almost certainly follow if the basics are better

known.

Active systems may eliminate desirable molecular properties

(e. g., shielding) when operating at extremely high power densities. A

very rough estimate indicates that, for the onset of saturation at an

isolated line center, the power density has to exceed 10-pZ[W/(cmtorr)2].

The nonlinear power saturation effects, however, are not treated any

further in this report.

The following applications are based on frequency-selective

emission originating from the 0 2-MS:

(a) Remote sensing of atmospheric temperature structures

(Meeks and Lilley, 1963; Lenoir, 1968; Wilheit, 1969;

Waters, 1970; Westwater, 1970). Ground-based strato-

spheric temperature soundings (Waters, 1973) and the

NIMBUS-5 (launched Dec. 1972) satellite (Sabatini, 1972),

both operate radiometers within the 0 2-MS band. The con-

version from measured radio noise to meteorological quan-

tities requires accurate knowledge of oxygen absorption.

This application in particular has fostered theoretical and

experimental work on the 0 2-MS (see Sect. 3. 2. 4).
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(b) Stratospheric navigation aids such as velocity and altitude

indicators (Mardon, 1969).

(c) Horizon sensor for satellite navigation (Guidice, 1971;

Grauling, 1972).

(d) Radiometric detection of strong temperature gradients in

the atmosphere for the identification of clear air turbulences

(Haroules and Brown, 1969).

(e) Earth magnetic field strength measuremencs from satellites

by means of the normal Zeeman effect (Sect. 2. 3. 3 and

3. 1. 1).

(f) Line emission (e.g. 119 GHz) used as a tracer in

biological research,for example,to study oxygen exchange

rate s.

Radio astronomy efforts which are searching for millimeter wavelength

emissions from exterrestrial sources are interested in accurately

defining the boundaries of the atmospheric 0 -MS, which masks their

useful frequency bands.

This report shall provide baseline data on unique atmospheric

transfer properties for a largely unused portion of the spectrum.
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2. THEORY

2. 1 Atmospheric Transfer Function

Signal analysis of millimeter wave s propagating through a well

mixed atmosphere is facilitated by treating the medium as a linear

system and applying the transfer function concept, (Morgan and Ekdahl,

1966). The central topic is the development of a microwave transfer

function for moist air as reliably as can be at the present state of know-

ledge. To accomplish this, one has to track down macroscopic pro-

perties of the propagation medium to their molecular origin and be con-

fronted with a combination of classical and quantum mechanical theories

which describe the interaction between radiation and gas molecules. A

rigorous test of these theories is still wanting since it can not be pro-

vided by the small amount of inaccurate and sometimes conflicting

experimental data. The complex transfer function is defined by

TE E/ E = exp [-( + jo)L]= exp [j 2rrv Ln/ c] (1)- o 20 log e

where E is the initial amplitude and E is the amplitude and phase

received after the geometric path length L for free space propagation;

j = 47iT Power attenuation rate a and phase-delay rate 0 are the well

known propagation parameters

a = (10 log e) (4Tr/ c)n" [dB/ km] ,

(2)
0 = (2rr v/ c)n' [rad/ km]

where V is the microwave frequency, c is the speed of light, and

10 log e - 4. 34294. The dimensionless macroscopic measure of the

interaction between radiation and gas molecules is a complex refractive

index
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n = n' - jn" , (Za)

whe re

n' = n +/In(v) is the Refraction Spectrum and
0

n" (v) is the Extinction Spectrum.

Both spectra are interrelated by Kramers-Kronig integral equations,

which are obeyed by the shape functions chosen (Eqs. 17, 23, 28,

Table 8). This report is concerned with theoretical and analytical

evaluations of the refractive index n for air over the frequency band,

v - 40 to 140 GHz. The environmental conditions to be considered for

altitudes h = 0 to 100 km are:

Dry air pressure p(h) [see below]

Mixing ratio of dry air rk=const. [see Table 1]

components

Temperature T(h) [330 to 1800K]

Water Vapor pressure Pw(T, h) [0 to 50 torr]'

Earth's magnetic field H(h and geo- [0. 2 to 0.7 gauss]*

strength magnetic
coord.)

The field strength H decreases between h= 0 and 100 km by 4. 8 percent.

Pressure changes versus altitude as shown (U. S. Std. Atm. 62):

h [km] 0 100 20 30 40

p [torr 760 199 41. 5 9.0 2. 2

h[km] 50 60 70 80 100

p[mtorr] 600 170 41 7.8 0. 23

The units [torr] and [gauss] do not comply with recommended S. I.

units. The conversions are 1 torr = 133. 322 pascal (N/ m2) and

1 gauss - 10 -' Wb/ m 2 .

8



The solution of equations (1) and (2) leads to the extinction and

refraction spectra of oxygen and water vapor being defined by

n' = n + E S. F! +An + An
O 1 n w

and by (4)

n" = E S. F!' + n" + n"
11 n w

1

where

n is the frequency-independent refraction of air (see Sect. 2. 2);
o

i is the label for lines of the 02 Microwave Spectrum

(see Sect. 2. 3. 1);

S. are the individual line strengths (see Sect. 2. 3. 2 and 3);
1

F., F." are the shape functions (real and imaginary parts) for
1 1

individual lines (see Sect. 2. 4);

n" and An indicates the nonresonant oxygen spectrum (see
n n

Sect. 2. 4. 2); and

n" and An indicates contributions due to water vapor (see
w w

Sect. 2. 5).

2. 2 Frequency-Independent Phase Delay

The non-dispersive phase delay of a millimeter wave propagating

through the gaseous atmosphere is commonly expressed in N-units,

N = (n o -) 106 = [pRO + p Rw (T)]/T, [ppm] . (5)o d w w

The corresponding phase delay in engineering terms is

o = (2rrv/c). n , [rad/km]

t Pressure proportionality is indicated in general for all appropriate
parameters by a superscript 0

9



Table 1. Relative Concentration r of Dry Air Components (near sea

level) and Refractivity Ro Measured for Different Air

Components at V = 61 156 MHz, p 20 torr, T= 280 0 K.

(Liebe and Welch, 1972).

k Component r R o(280) Ro/T

ppm by vol ppm/torr ppmOK/torr

1 Oxygen O, 209 4 6 0 (a) 0. 3427 95.95

2 Nitrogen N 780 840 0. 3771 105.60

3 Argon Ar 9 340 0. 3562 "  99.73"

4 Carbon Dioxide CO 2  314 0. 6356 178. 0

5 Neon Ne 18.2 0. 08659 24. 25

6 Helium He 5.2 0. 0450 12.6

7 Methane CH 4  2 0. 5672 158. 8

8 Krypton Kr 1. 1 0. 5428 152. 0

9 Nitrous Oxide N 2 0 0.5 0.7138 199.9

Dry Air 106 0.3696 103.54

Water Vapor H 2 O variable 6. 712 1879(2800 K)

(a) Machta and Hughes (1970).

* Reference value; all measured R 0 are relative to the R 0 (Ar) -

value given by Newell and Baird (1965).
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The refractivity value s for dry air and water vapor are

R* = r R = 103. 5 [ppm'K/ torr]

and

R ° = 95. 5 + 499500/ T [ppmOK/ torr] ,
w

which were measured-for the air components at 61. 156 GHz as listed in

Table 1. Similar results have been reported by Boudouris (1963) and

Newell and Baird (1965).

2. 3 The Microwave Spectrum of Oxygen

The following simplified explanation can be given as to the nature

of the 02-MS. The magnetic dipole moment of the 02 molecule couples

to the microwave radiation field which excite s quantized change s

(molecular resonances) between fine structure levels of the 0 2 rotational

energy states. At these resonances the molecules momentarily store

(phase dispersion), absorb (attenuation), and randomly re-radiate

(incoherent noise) microwave energy.

Solutions to problems of atmospheric millimeter wave trans-

mission (Eq. 4) require detailed knowledge of the 02 Microwave Spec-

trum. Parameters of the 02-MS which originate from properties of

"isolated" molecules are the line center frequencies vo and the strength

value s S.

2. 3. 1 Line Center Frequencies of the 02-Microwave Spectrum

The 0 2 fine structure microwave spectrum obeys the selection

rule: AN= 0, AJ =+ 1 (N, J are the rotational and total angular momentum

quantum numbers), and the transition frequencies V1 can be calculated
0

by means of (Welch and Mizushima, 1972)

11



+ 1 5
Vo(N) =k + -4 + (1 + - (a'+a + 2)

oo o0 T 2
(6)

S({f(a) - (2a+ 1) [(a) + - } ,

where a=N±l, N = 1, 3, . (only odd values- are allowed),

f (a) = C 2 + a(a+ 1)D 2

1 1
C = (2 a+ 1) [(a) -- 2 (a + a + 4)]1

[- + X (7a 2 + 7a+4)]/ (2 a + 1)
0 3 1

D= 2[X +X (aS+a+ 1)]/(2a+ 1)
o 1

P(a) = B + 2B (a 2 + a+ 1) + B (3 a4 + 6 a3 + 13 a2+ 10a+4)
0 1 2

+

The line designation N denotes the transitions J = N ± 1 --> J' = N.

The most recent values of the molecular constants are given by Welch

and Mizushima (1972) and they are in megahertz:

Rotational: B = 43100. 518 (3), B1 = -0.14492 (9),

B 2 = 1.57 (11) • 10- .

Spin-spin coupling: X0 = 59501. 342 (7),

k, = 5. 847 (3) - 10-2

Spin-rotational coupling: .po = -252. 5865 (10),

p, = -2.464 (20) • 10-4

12



For all atmospheric transmission problems, it is sufficient to
i

consider i = 44 individual line s. The known value s of Vi are given in
0

Table 2. Most of the center frequencies have been measured with high

accuracy, and the few missing ones are predicted by equation (6).

These predictions, for example, guided atmospheric emission measure-

ments by Waters (1973) whereby the agreement was excellent (see

Table 2).

2. 3. 2 Line Strengths of the 02-Microwave Spectrum

For practical applications it is helpful to reduce molecular line

shape theory and define a line strength parameter S (Liebe, 1969a) as

a multiplier to a Lorentzian shape function (Sect. 2. 4. 1). Pressure and

temperature dependences of the strength for an individual line of the

O2-MS are given by

S = Si (T) p r 1 , [Hz] (7)

where r i = 0. 20946 (Table 1), and ( = 0. 9976, portion of molecules of

mass 1602

The strength parameter S' was derived from the equation des-
1

cribing the transition probabilities. Assuming for the magnetic field

strength H = 0 (H # 0, see Section 2. 3. 3) leads to the expression

(VanVleck, 1947; Morgan and Ekdahl, 1966; LeFande, 1968; Wilheit,

1969)

S= K . f(N) . f(T) , [Hz/ torr] (8)
1 o0

where K = 69. 50125. 10 - 6 . k(J) [OK3/ torr] and k(J) is given in Table 3

and discussed below.

The isotopic abundance of 1702 and "02 are 0. 037 and 0. 204 percent
re spe ctively.

13



The intensity functions (Matrix elements) are

f(N ) = (2N 2 + 3 N) / (N+ 1)

f(N-) = (2N 2 + N- 1)/N . (9)

The temperature function is in units of [I/ oK3]

f(T) = T- 3 exp[-2. 06858. N(N+1)/ T} [1 - (hi /2 k T)] (10)

The error of the approximation [1- (hvy / 2kT - 1 is less than 1 per-
o

cent for all values of interest (see Fig. 3).

The approximation made in calculating the matrix element of the

magnetic dipole moment operator was that 02 is a pure Hund' s case

"b" molecule. The fact that this is not exactly true was accounted for

by a correction factor k(J) 1, which is a mixing coefficient quantifying

the purity of a particular state (Zimmerer and Mizushima, 1961; Wilheit,

1969). The k(J) values given in Table 3 were obtained by diagonalizing

the Hamiltonian matrix with the appropriate wave functions. Equation
+

(8) was applied to compute S.oat T = 300 0 K up to N =43, and the results
1

are listed in Table 3. Figure 2 displays the strength value distribution
i

versus the frequency positions v for 2000 and 300 0 K.

The temperature dependence of the strength parameter can be

expressed relative tothe reference temperature, To=300K, by

S. (T) = S. (300) (N) , (11)1 1

with

t (N) = (300/ T) 3 . exp -6. 89526. 10i. N(N+ 1)[(300/T)-I]) . (12)

The temperature function can be approximated for a small temperature

interval (A T F 40 "K) by

(T T) w ( N )  (13)

14



Each N-pair of lines possesses its own temperature dependence g(N).

The values of are given in graphical form in Figure 2 for atmospheric

temperatures, and numerical values are listed in Table 4 which also

shows temperature exponents w(N) of equation (13) for T 0 280± 20 0 K.

The temperature function indicates the population of energy states

relative to 300 K. At low temperatures many of the lines with high

N-numbers may be neglected.

2. 3. 3 Zeeman-Splitting of the Lines in the 0 2 Microwave Spectrum

The 0 2-MS is greatly complicated by Zeeman-splitting of each

fine-structure line into many components under the influence of a per-

manent magnetic field such as the earth' s. The Zeeman effect, which

originates from the interaction of the molecular magnetic moment with

a static magnetic field of strength H, removes the spatial M-degeneracy

of the J levels, splitting each level into (2J+l) sub-levels (M-magnetic

quantum number). The complete Zeeman Hamiltonian for 02 was given

by Tinkham and Strandberg (1954). In the weak field case (H < 1 gauss),

however, it is sufficient to retain only the term involving the interaction

of the molecular electronic spin moment with the field. Matrix elements

of the spin moment, evaluated in the Hund' s (case "b") representation,

are given by Evenson et al.(19 6 8) and may be used in a perturbation

calculation to obtain the Zeeman transition frequencies.

The selection rule on AM (change in magnetic quantum number)

for Zeeman transitions is derived from assumptions about the orientation

between H and the microwave magnetic field component A perpendicular

to the direction of propagation. By a judicious choice of the orientation

between H and I , one can selectively excite two different types of

Zeeman transitions:

15



(1) Linearly polarized radiation "induces"

AM= 0, called TT transitions when H and are perpendicular,

AM= 1, called a transitions when H and . are parallel, and

in both cases H is perpendicular to the propagation direction.

(2) Circular polarized radiation "induces"

M= + 1 or a+ transitions for right-handed polarization,

AM= + 1 or a transitions for left-handed polarization, and

in both cases H is parallel to the direction of propagation.

The simplest pattern, the normal Zeeman effect, is exhibited by

the 1+ and 1- lines (see Table 5), each splitting into three components

whereby only the two a components shift away from the center (Hill and
+

Gordy, 1953). The anomalous Zeeman effect splits the lines N = 3-,

5 , ... into 3(2J + 1) components where J is the smaller of the two

J values involved in the transition.

The frequency of each Zeeman component is determined by

z =v +1i(M,N) . ZH [MHz] (14)
o o

The shift is proportional to the external field strength H, and r (Table 5)

is less than one. The factor of proportionality for 160 2 microwave lines

is Z = 2.8026 [MHz/ gauss]. The earth' s magnetic field strength,

H = 0. 2 to 0. 7 gauss, produces frequency shifts for the Zeeman com-

ponents of up to 2 MHz.

The line strength of each Zeeman component is given by

z
So = V . K .f(M,N). f(T) , [Hz/torr] (15)

z o

analogous to equation (8). The intensity function f(M, N) is listed for

the different Zeeman components in Table 5. Summing over polarizations

and over all M - degeneracies of the final state J' yields f(N).

Examples for atmospheric conditions are discussed in Section 3. 1. 1.
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Table 2. Observed and Calculated Line Center Frequenciesv o

of the 1602 Microwave Spectrum, in MHz.

Line Calculated Line Calculated

i N+ Observed Ref. (Eq. 6)) i N- Observed Ref. (Eq. b) : )

1 1 +  56264.766(20) a 56264.758 2 1- 118750. 343(10) b 118750. 330

56264.778(10) b

3+ 58446. 580(10) c 58446. 580 3- 62486. 255(10) c 62486. 267

58446. 600(10) b 62486. 225(10) b

5 5+ 59590. 978(10) c 59590. 979 5- 60306. 044(10) c 60306. 065

7+ 60434. 776(10) c 60434. 778 7- 591 64. 215(10) c 59164. 211

60434.788(10) f

9 +  61150. 570(10) c 61150. 567 10 9- 58323. 885(10) c 58323. 883

61150. 565( 5) f
11+ 61800. 169(20) a 61800. 167 11- 57611. 4 ( 2) d 57612. 492

61800.155(10) c
13+ 62411. 223(10) c 62411.234 13- 56968. 1 80(20) a 56968. 214

15 15+ 62996. 6 ( 2) d 62997. 999 15- 56363. 393(20) a 56363. 397

17+ 63568. 520(10) c 63568. 542 17- 55783. 819(20) a 55783. 805

19+ 64127. 777(20) a 64127. 790 20 19- 55221. 372(20) a 55221. 362

21+ 64678.2 ( 2) d 64678. 920 21- 54671. 145(20) a 54671. 141

23+ 65224. 12 (20) c 65224. 076 23- 54129. 4 ( 4) d 54129. 926

54130. 2 5) e

25 25 + 65764. 744(20) a 65764. 760 25- 53599. 4 8) d 53595. 682
53595. 9 ( 2) e

27 +  66302. 06 27- 53066.9 2) e 53066. 802

29+ 66836. 77 30 29- 52542.4 2) e 52542.23

31 +  67369.51 31- 52021.4 ( 5) e 52021.17

33+ 67900. 73 33- 51503. 02

35 35+ 68430. 8 35- 50987. 3

37+ 68960. 1 37- 50473. 6

39+ 69488. 7 40 39- 49961. 8

41 +  70016.9 41- 49451. 4

43 43+ 70544.9 44 43- 48942. 4

(---) Uncertainty of the last digits given

,)See also Welch and Mizushima (1972)

References - a. West and Mizushima (1966)
b. McKnight and Gordy (1968)
c. Zimmerer and Mizushima (1961)
d. Mizushima and Hill (1954)
e. Waters (1973)
f. Liebe and Welch (1972)
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Table 3. Line Strength S' (300) at T= 300 0 K (Eq. 8) and Strength Correction k(J)

for the 1602 Microwave Spectrum.

Line k S (300) Line k(J) (300)/torr]

i N+ [Hz/torr] i N- Hz/torr]

1 1 0.9808 0. 348 69 2 1 1 0. 597 25

3+  0.9941 0.925 05 3- 0.9808 0.963 36

5 5 +  0. 9972 1. 341 02 5- 0.9941 1. 348 70

7 +  0.9984 1.562 63 7- 0.9972 1.526 31

9 +  0.9989 1.589 94 10 9- 0.9984 1.515 04

11 +  0. 9992 1.458 82 11- 0.9989 1, 359 54

13 +  0.9997 1.227 20 13- 0.9992 1.120 44

15 15 +  1 0.954 01 15- 0.9997 0.853 87

17 +  1 0. 689 76 17- 1 0. 605 61

19 +  1 0.465 60 20 19- 1 0.401 19

21 +  1 0.294 21 21- 1 0.248 87

23 +  1 0.174 37 23- 1 0. 144 84

25 25 +  1 0.097 074 25- 1 0.079 186

27 +  1 0.050 820 27- 1 0.040 717

29 +  1 0.025 041 30 29- 1 0.019 707

31 +  1 0.011 621 31- 1 0.008 985

33 +  1 0.005 083 33- 1 0.003 860

35 35+ 1 0.002 096 35- 1 0. 001 564

37+ 1 0. 000 815 37- 1 0. 000 598

39 39+ 1 0. 000 299 40 39- 1 0. 000 216

41 +  1 0. 000104 41- 1 0. 000073

43 43+ 1 0. 000034 44 43- 1 0. 000024
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Figure 2. Line strength parameter for the 0 2 -MS at 200 0 K and 300 0K.
Numerical values at 300'K are listed in Table 3.
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Table 4. Temperature Dependence - of the Line Strength S*(300) of the 0 2 Microwave Spectrum

Temperature T
w

LINE 180'K 200 0 K 220 0K 240 0 K 260 0 K 280 0K 300 0 K 320 0 K 340 0 K (280+

N± 20 0 K)

1 4.5873 3.3518 2.5230 1.9464 1.5329 1.2287 1 0.8247 0.6881 2.99

3 4.3812 3.2382 2.4605 1.9131 1.5168 1.2227 1 0.8283 0.6937 2.91

5 4.0333 3.0434 2.3519 1. 8547 1.4881 1. 2119 1 0.8347 0.7039 2.78

7 3.5789 2.7824 2.2035 1. 7734 1.4476 1. 1965 1 0.8441 0.7189 2.59

9 3.0611 2.4747 2.0234 1.6724 1. 3963 1. 1766 1 0.8566 0.7390 2. 33

11 2.5236 2. 1411 1.8212 1. 5556 1. 3355 1.1525 1 0.8722 0.7646 2.02

13 2.0054 1.8021 1.6066 1.4272 1.2665 1. 1245 1 0. 8912 0.7962 1.65

N 15 1.5361 1.4755 1.3892 1. 2914 1. 1909 1. 0928 1 0.9138 0.8346 1.22

C 17 1.1341 1.1752 1.1773 1.1525 1. 1104 1. 0579 1 0.9401 0.8805 .73

19 0.8071 0.9106 0.9779 1.0145 1. 0265 1.0200 1 0.9706 0.9350 + .18

21 0.5536 0. 6863 0.7962 0. 8808 0.9410 0. 9796 1 1.0055 0.9993 - .42

23 0.3661 0.5032 0.6353 0.7542 0.8553 0.9372 1 1.0453 1.0750 -1.1

25 0.2333 0.3590 0.4969 0.6370 0.7709 0.8930 1 1.0904 1.1639 -1.8

27 0.1433 0.2491 0.3809 0.5306 0.6889 0.8476 1 1. 1413 1.2684 -2.6

29 0.0849 0. 1681 0. 2862 0.4359 0.6104 0.8013 1 1.1988 1.3913 -3.5

31 0.0484 0. 1104 0.2108 0.3532 0.5363 0.7546 1 1.2635 1.5361 -4.4

33 0.0266 0.0705 0. 1522 0. 2823 0.4672 0. 7078 1 1. 3363 1. 7069 -5. 3

35 0.0141 0.0438 0. 1077 0.2226 0.4036 0.6613 1 1.4182 1.9091 -6.3

37 0.0072 0.0265 0.0747 0. 1730 0.3457 0.6154 1 1.5103 2.1491 -7.4

39 0.0036 0.0156 0.0507 0. 1327 0. 2936 0. 5704 1 1.6139 2.4351 -8.6

41 0.0017 0.0089 0.0338 0.1004 0.2472 0.5267 1 1.7306 2.7771 -9.8

43 0.0008 0. 0050 0.0221 0.0749 0.2064 0.4844 1 1.8622 3.1877 -11
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Figure 3. Temperature dependence of the line strengths So (300). Numerical values are listed
in Table 4. i



Table 5. Frequency Shift rj and Intensity Functions f(M', N) for Zeeman-Components
of 0 2 Microwave Spectrum Lines (Eqs. 14, 15).

Initial State: N, J, IMI:S J Final State: N, J', IM'I J' Selection Rule: AM = M' - M

Intensity Functions f(M',N)
Zeeman Frequency Shift n (M,N) (Matrix Elements)

+ +
Transitions N - Line N - Line N - Line N - Line

+ M(1 - N) + 1 M(N + 2) + 1 3N(N + M' + 1) (N + M' + 2) 3(N + 1) (N + M') (N + M' - 1)

(M = 1) N(N + 1) N(N+ 1) 4(N+ 1)2 (2N+ 1) 4N2 (2+ 1)

S ) M(1 - N) MN + 2) 3N[(N + 1) 2 - M'2 3(N + 1) (N2 - M' 2 )

+ 1 N(N+ 1) (N+ 1)2 (2N+ 1) N2 (2N+ 1)

(hM M ) M- 1 M(N + 2) - 1 3N(N - M' + 1) (N - M' + 2) 3(N + 1) (N - M') (N - M'- 1)
N(N+ 1) N(N+ 1) -(N + 1) 2 (2N + 1) 4N (2N + 1)

After Hill and Gordy (1954) After Lenoir (1968)

Example: N = _ (M,N) f(M',N) f(N)

M 0T t - M' 0 -+ (Eq. 8)

1 Line + 1 0.5 0 0.5 + 1 0.75 0.75 0.125

0 0.5 0 0.5 0 0.375 1 0.375 2.5

J = 2- J' = 1 - 1 0.5 0 0.5 - 1 0.125 0.75 0.75

1 Line +1 1 0 0

0 0.5 0 0.5 0 0 2 0 2

J =0- J' 1 - 1 0 0 1



2.4 Line Shapes of the Atmospheric 0 2 Microwave Spectrum

The first complete theory of the atmospheric 02-MS was given

by Van Vleck (1947). As specific applications based on absorption

(e.mission)properties of the 0 2-MS evolved, the need for more detailed

spectroscopic information was developed. Especially the works of

Meeks and Lilley (1963), Lenoir (1968), Wilheit (1969), Waters (1970),

and Westwater (1970) expanded and refined the theory of the atmospheric

02-MS for purposes of remote sensing atmospheric temperature

structures.

The molecular theory of the pressure-broadened 02-MS was

advanced by Dillon and Godfrey (1969, 1972) and Mingelgrin (1972).

Both treatments are based on an intermolecular potential model for

02-02, 02-N2, 02-Ar interactions, and scattering calculations of the

trajectories for rotational and translational motions. Dillon-Godfrey

treat the rotational trajectories quantum-mechanically up to N = 7.

Mingelgrin solves both trajectories classically up to N= 23, however,

the approximate nature of this assumption is expected to yield width

parameters which are slightly larger than the true ones (R. Gordon,

private communication, 1973).

Measured high-pressure (3 to 40 ktorr) absorption rates of pure

02 and 0 -Ar, O2-N 2 mixtures over the 48 to 81 GHz range (Mingelgrin

et al., 1972) are reproduced by the theoretical calculations. Implica-

tions of both theories to the atmospheric 0 2 -MS are discussed in

Section 2. 4. 1.

In treating the intensity distribution (line shapes F' , F") of the

02-MS it is assumed that the microwave power flux density is sufficien-

tly low that nonlinear saturation effects are avoided. As a result, the

integrated area of each absorption line is proportional to the number of

possible transitions (numbers of molecules) or, on a macroscopic

'The number of molecules per cm 3 equals 9. 662. 1018. p/T (ideal gas law).
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scale, to pressure. The line strengths S. (Sect. 2. 3. 2) have been
1

defined as scale factors to the area T . n". y (Eqs. 18, 19), which is
o

that of a Lorentzian shape (Fig. 4). While the theory of spectral

properties relating to the 0 2 molecule is well understood, this is not

the case for the intensity distribution, especially when considering the

full range of conditions specified by equation (3). The atmospheric

02-MS for pressures above 1 torr is broadened by binary collisions

(Sect. 2.4. 1); for pressure below 1 torr, the gradual transition from

collision-to Doppler-broadening is described by a Voigt profile

(Sect. 2.4. 3).

2.4. 1 Pressure Broadening of the 0 2 Microwave Spectrum

In the simple case of a single, pressure-broadened line, theory

predicts the Lorentzian line shape to be valid when y << vo (e. g. , Dillon,

1969). The frequency, normalized to a multiple of the width y , is

z = (v - v)/y [1] , (16)

yielding the shape factors in the following form:

Extinction Dispersion

F" = 1/y(1+z 2 ) F' = z/y(1+z 2 ). [1/Hz]

The approximations for the wing regions (z > > 1) are (17)

F"y / ( v - )) and F' - I/(vo-)

The peak extinction, The peak dispersion

for z = 0 (v=vo) is for z = 1 (v = vo + y ) is

n" = S/y An = S/ 2y (17a)
o o

This yields the two line profiles in the form

n" = n"/(l+z 2 ) and An = An 2z/(l+z2 ) . [1] (18)
0 0
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Figure 4 gives a graphical presentation of the equations above. The

linewidth y can be expressed for atmospheric air by (Liebe, 1969a)

y = yo(300) md(300/T)u.p + m (3 0 0 /T). p . [MHz] (19)

Table 6 shows the large body of width parameters yo(300), which exists

for pure oxygen (md = 1). The other quantities of equation (19) are md
and mw , the broadening efficiencies for dry air and water vapor, and

u and v, the associated temperature dependences. The arrangement

of y'(300) versus the quantum number N in Figure 5 seems to support

the theoretically predicted N-dependence (Dillon and Godfrey, 1972;

Mingelgrin, 1972), although the experimental data (some are claimed to

be accurate to ± 5 percent) are spread over a large range (± 20 percent).

The uncertainties of y are one of the largest sources of error in a

reliable description of the atmospheric 0 2-MS (Liebe, 1969b).

The isolated line is a good candidate for quantitative experi-

mental work on the O -MS. From measured values of An and/ or n"

one needs to determine the quantities (Eqs. 18 and 19)

- So(300). 3(T) - yo , md, m , u, v
o d w

Profiles of n" and An close to a line center (I V - v j 10 MHz) and at

low pressures (< 1. 5 torr) for different values of H can establish the

validity of equations (14) and (15). 0 2-MS measurements are in pro-

gress in our group using dispersion and absorption pressure-scanning

spectroscopy (Liebe et al., 1973).

So far, we have measured the 9+ line and obtained the following

preliminary results (Liebe and Welch, 1972): (20)

(a) v (9+)-the value is given in Table 2. A pressure-induced

shift of vo was not detectable (<± 10 KHz/ torr for p: 50 torr)

which agrees with predictions (Dillon and Godfrey, 1972).
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(b) So(300).(T) - the agreement with calculated values (Tables 3

and 4) was within ±5 percent between 250 and 325 0 K. More

careful work at 300 K yielded agreement within ± 1 percent.

(c) F', F"- the shape factors were verified as being

Lorentzian. The pertinent width parameters were

y°(300) = 1. 81 [MHz/ torr] ±2 percent, md = 0. 93, u= 0. 87,

m = 1. 25, and v- 1 (assumed).

(d) The experimental Ano versus vo - v profile at H = 0. 53

[gauss] was in good agreement with "Zeeman" calculations.

The responses of An and n" at H = 0. 53 [gauss were undis-

tinguishable from those measured for H - 0 for p> 1. 5

torr and IV (9+) - vl> 10 MHz.

(e) The comparison between air and oxygen dispersion yielded

[An 0 (Air)/ Ano (02)] = 0. 225 (= rl/ md according Eqs. 18, 19).

For atmospheric 02-MS calculations, we have arranged the rele-

vant spectroscopic parameters in Table 7 by order of increasing fre-

quency. The theoretical width values by Dillon-Godfrey (1972) are

listed, but they have been scaled up by a factor 1. 14 to match our

experimental y(9) value. A computer summation of contributions

(Eq. 4) from 44 lines of the 0 2-MS for six different pressures revealed

the spectra shown in figures 6 through 8. The calculation used the

S°(300) values of Table 7 and y. = 1.6 MHz/torr. Pressures chosen
1

are representative for h- 30 to 0 km. We conclude from these results

that the atmospheric 02-MS needs to be discussed separately for three

pressure ranges:

I - Isolated Line Spectrum for p< 10 torr (Fig. 6).

II - Continuum Spectrum for p > 300 torr (Fig. 8),

where the envelope is determined by all lines.

I/II - Mixture of I and II (Fig. 7).
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In range II, the addition of individual line responses (Beer-

Lampert law) may not be a valid procedure since collisions do alter the

energy levels to an extent that they can interfere with each other.

Mingelgrin (1972) included overlap effects in his calculations, which are

compared with the pressure-linear width model (Eq. 19) in Figure 9.

A substantial narrowing can be noticed above 100 torr. For standard

conditions (760 torr, 298 0 K) the difference in peak intensity at 60 GHz

is as high as +28 percent. Overlap effects between N+ and N- lines

\have been computed by Dillon (1969) and found to be insignificant for

standard conditions. These contradicting predictions need to be

clarified through analysis of reliable experimental continuum data.

A necessary condition for overlap in the coalescence of extinc-

tion line shapes (Eq. 17) under the influence of pressure-broadening.

Table 7 reveals 8 lines where the separation P of the centers is only

about 1/ 5 of the normal spacings. These doublets overlap with

increasing pressure first. A second condition comes from pressure-

broadening theory, which predicts different sensitivities of the energy

levels to mutual interferences. Approximately, one can treat the

individual linewidths as being no longer proportional to pressure and

formulate

yc(range II) - yi p - 6( , p, N) . (21)

For example, the 760 torr attenuation profile by Mingelgrin

(Fig. 9) can be fitted approximately by assuming for the doublets a

linewidth of one-half of the isolated width. Thus the doublets may be

responsible for most of the overlap effects of the atmospheric continuum

02-MS. Considering only overlap factors 6 for these line pairs would

simplify computations of the continuum 02 spectrum.

An empirical width model was introduced by Meeks and Lilley

(1963) to reconcile atmospheric attenuation rates between the line
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spectrum (I) and the continuum spectrum (II). Zenith attenuation data

(see Table 10) have been fitted with this model whereby over the range

of the cont4inuum spectrum, 7 was reduced to 1/ 2 (Carter et al., 1968)

or even to 1/ 3 (Reber, 1972). This will be treated further in Sections

3. 1 and 2.

2.4. 2 Nonresonant O 2 -Spectrum

In a classical picture the molecular dipole is unable to follow

completely the oscillating field. Thus, after every collision there is a

preferred reorientation relative to the field. Formally, collisions in-

duce transitions between identical energy levels under the selection rule,

AJ = 0 and AN = 0. As a consequence, increasing pressure (p> 100 torr)

adds to the 0 2-MS a non-resonant contribution which is centered at

v = 0 Hz and can be described by a Debye-type polarization (VanVleck,

1947; Zhevakin and Naumov, 1967) which is

n" = S F" and An = S F' (22)n o o n o o

The Debye shape factors are

F" = 2vyo/ ( 2 +y") and F' = [2 /(2+yo)- 1 . (23)

The 02 dispersion spectrum at 760 torr was calculated (v= 0 to 80 GHz;

N < 25)by Mingelgrin (1972), and from the result, which is shown in

Figure 22, we can deduce approximate values of strength and width

S 5. 2 - 10 -10 (300/ T)2  r -p [ I/ torr] , (24)

Y 0 1. 8 (300/ T) -p , [MHz/torr]

The example for standard condtions at sea level (760 torr, 300' K)

shows that at microwave frequencies the nonresonant part is small when
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compared with the much larger resonance part and it can very well be

neglected in the remainder of this report:

v [GHz] 1. 37 (yo) 40 90 140

a [dB/km] .021 .041 .041 .042

A n [rad/km] -. 001 -. 070 -. 157 -. 244
n

2. 4. 3 Transition to Doppler Broadening (Voigt Profile)

As the pressure decreases with altitude (Eq. 3), we have to

consider another broadening mechanism - the Doppler effect. The

transition frequency of a non-colliding molecule moving with velocity

c in respect to the radiation field is vo[ 1 +(c / c)] . The velocity

distribution of gas molecules in thermal equilibrium is Maxwellian.

The resulting Gaussian intensity distribution has a linewidth yD which

depends on temperature. The pressure-independent width yD makes the

peak intensity proportional to pressure, thus forcing the atmospheric

0 2 line spectrum to vanish. The equation for yD (see Table 8) yields

the following values for 1602:

T[oK] YD [kHz]

At v = 68. 49 and at 49. 96 [GHz]

180 59. 1 42. 5

290 74. 9 53. 9

using
y = 6. 34. 10 - . v .4T [Hz] (25)D o

The Gaussian shape of a Doppler-broadened line is for extinc-

tion (F") a little broader at the center but decreases much more rapidly

in the wings when compared to a Lorentzian. A normalization factor,
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rTT in2 is introduced for the Gaussian (area = n" -i.y.4 / in ) in order
0

to match the Lorentzian (area = n' y. TT) integrated strength (Table 8).
o

A convoluation of the two shape functions leads to a Voigt profile

whereby it is assumed that the free motion of molecules is unaffected

by collisions ("pressure" and "temperature" are statistically independ-

ent) which is not exactly true. The reduced mathematical expressions

for the Voigt function are given in Table 8. The Voigt parameters

Y = yP/ Y D  and x = AV/YD (26)

govern the extinction profile u(x, y) = n"/ n" and the dispersion profile
0

v(x, y) - An/ An as shown in Figure 10. For y< 0. 1 the shape is

practically Gaussian, and for y> 10 the shape is Lorentzian. As the

pressure goes to zero (y<0. 1),the rate for the Lorentzian values n" and
0

Ano to approach zero becomes 0. 678 Sp/ y D for the max. extinction

n" and 0.610 Sop/ y for the max. dispersion An (see Figs. 10 and 11).
o D o

Figure 11 also gives the corresponding frequency loci of An (p) and

y(p). In principle, the Voigt profile has to be applied to each Zeeman

component in the presence of a magnetic field H.

2. 5 Attenuation and Dispersion Due to Water Vapor

Two rotational lines of H20 are centered on either side of the

40 to 140 GHz band. The low-frequency wing of the complete H20

rotational spectrum and additional polarization mechanisms also

contribute to atmospheric millimeter wave transmissivity. We can

separate the resonance contributions from the remainder (q) and define:

2 2

n" (v)= E S. F' + q " An = S. F + q' . (27)
w i=1 1 w w i=1 1 1 w
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The resonant contributions by the two H20 lines adjacent to the fre -

quency band under consideration can be evaluated using the following

spectroscopic parameters (Liebe, 1969a)

i 1 2

V [GHz] 22. 235 15 183. 310 12

300)300 3.52300 300
S [Hz] 13.9( exp [2. 14(1 -T0)].pw 3 12 -0 exp[0653(1- 0)].p

( 0.6 

0.6
y [MHz/torr] 18.0[0.209(- p + • 0) Pw] 19[0.1(- )P + (30) Pw]

The Gross shape was found to give a better fit of experimental data in

the wings of strongly foreign-gas-broadened lines,

F' = Zv (v 2 - v 2 )/ [(v 2 _ v 2 )2 + (2vy)] , [1/ Hz]
G o o

(28)
F" = 4vy/ [(v 2 _- 2 ) 2 + (2y) 2 ] . [1/Hz]

G o

An example for pw = 10 torr under standard conditions, p = 760 torr and

and 300 'K, yields the following resonance contributions (Eqs. 2, 27, 28)

v[GHz] 2 2 (Vo )  40 60 80 100 120 140 1 8 3 (Vo)

a [dB/km] .194 .016 .009 .010 .017 .038 .106 33.8
w

AO [rad/km] .001 .026 .047 .071 .103 .153 .245 .017
w

These contributions are by far not enough to account for milli-

meter wave H20 attenuation. Laboratory measurements at two fre-

quencies produced results shown in Figure 12. Experimental uncer-

tainties are on the order of 10 percent. A tentative fit of the data was
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accomplished by (Liebe et al., 1973) (29)
2.4p. 2. 6 )L0'10-3

a(" 3pw 61 TO +0.8pv 61\ '0 T[dB/km]

where the frequency v is in gigahertz.

The term linear with pw indicates roughly the contribution

expected from the residual water vapor attenuation due to the low fre-

quency wing of the rotational spectrum. VanVleck (1947) estimated for

this term the following amount (Liebe, 19 6 9a)

-9 2 2.5
.9 .910 v pw /T , [dB/km]

-3
which yields at 61 GHz and 300 0 K the value 4. 5 • 10-3 [dB/ kmtorr].

2
The p w term, however, points to pressure-induced polarization

effects such as dimerization. Noteworthy are the temperature depen-
-i

dence. An Arrhenius plot, loga versus T 1, yields a "binding energy"

of 4. 5 [kcal/ mole] ± 10%. The p2 term gives rise to abnormal high

attenuation when saturation (pS) is approached. A similar p2 response

was measured for the dispersion q' = n' (Vl) - n' (vl/ 2) for v1 at

61. 2 GHz (T = 280 and 325 0 K). The sketchy experimental evidence of

unaccounted, pressure-induced polarization in water vapor certainly

warrants a more careful study of a (q" ) and q' over a wider rang of
w w

millimeter wave frequencies and close to saturation pressures pS (T).

Such experiments can shed light on the fact that the theory of the rota-

tional H20 spectrum does yield atmospheric attenuation values in the

wings of the two microwave spectral lines which are too low when

compared with measured data.
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Figure 4. Normalized (S = y) Lorentzian shape of an isolated
pressure-broadened line for dispersion (F') and

extinction (F"). The normalized frequency z indi-

cates multiples of the width y.
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Table 6. Reported width parameters y0 (300) and their temperature dependency u for self-

pressure broadened lines of the 02 Microwave Spectrum.

Theory y 0 (3 0 0 ) in MHz/torr u
Experiment

N± (a) (b) (c) (d) ke) (f) (h) (i) (k) (1) (b) (c) (d) (e) (k) (f)

1+ 2.37 2.015 - 2.20 - 1.96 .80 -

2 1.870 1. 9 0  - 1.97 -. 90

3+ 1 682 1.86 x  1.96 2.23 2.07 1.71 .85 2

- 1.680 -- 1.96 - - 1.92 - -

5+ 1.72 x  1.56 1.96X 1.80 1.86 .88 2

2.05 1.611 1.98 x  1.60 1.99X - - - 2

7+ 1.73x 1.68 1.92 x  - 2.05 .79 2

2.0 1.592 1.53 x  1.70 1.82x  2.01 - .84 2

9+ 1.81 1.78 x  1.42 1.93 x  - 85- 2
S 1.95 (1.59) - 1.48 x  1.64 2.00X  1.94 1.97 .71 2

11+ 1.95 1.56 x  1.60 - 1.97 2
0 (5 t- -- -- 1.97 - o0 -

13+ . ( 1.54 - - -O
1.91 (1.59) - 1.86x  

1.87

15+ 0 l - - 1.77
1.71 (1.59) 0 - 1.99 -

O (D
17+ 1.73 (1.59) 0 1.50 - -

"o - 1.76

19+ 1.58 (1.59) 1.92 1.62

2 + 1.60 (1.59) 1.2623+ x ± 5 percent rms 1.26
23+ 1.52 (1.59) 1.29

References: (a) Mingelgrin (1972) (c) Liebe & Welch (1972) (g) Schulze & Tolbert (1963)

(b) Dillon (1969) (d) Reber (1972) (h) Zimmerer & Mizushima(1961)

Dillon & Godfrey (1972) (e) Carter et al. (1968) (i) Artmann & Gordon (1954)

(f) Stafford & Tolbert (1963) (k) Hill & Gordy (1954)
(1) Anderson et al. (1952)
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Figure 5. Reported line width parameter f(300) for the self-pressure broadened

02 Microwave Spectrum (see Table 6) versus the quantum number N
for end-over-end rotational angular momentum.



Table 7. Spectroscopic parameters of the 0 2 microwave spectrum

used for computations of this report.
T = 300 0 K

Remarks
i o + - S ° (300) y o (300)

[1/torr] [MHz/torr] Nonreson.
0 ------- 0 . . I 1 to 25_ 5.2.10-10 --- 1.8 S.pSectrum

[GHz] [Hz/torr]
1 48.942 4 43 .000 024 1.81

49.451 4 41 .000 073 1. 81
49.961 8 39 .000 216 1. 81
50. 473 6 37 .000 598 1.81

5 50.987 3 35 .001 564 1. 81
51.503 02 33 .003 860 " 1.81
52.021 17 31 .008 985 o 1.81
52.542 23 29 .019 707 1. 81

53. 066 80 27 .040 717 1.81
10 53. 595 68 25 .079 186 1. 81

54. 129 96 23 .144 84 1. 81
54. 671 145 (20) 21 .248 87 1. 81
55.221 372 (20) 19 .401 19 . 1. 81 E
55. 783 819 (20) 17 .605 61 1.81 [MHz]

15 56.264 778 (10) 1 -.. . 348 69 . 2.29 Doublet

56. 363 393 (20) 15 .853 87 1.81 98.62
56.968 180 (20) 13- 1.1204 4 1.81

57.612 49 11 1. 359 5 > 1.81
58. 323 885 (10) / 1.515 0 -I.81 Doublet

20 58. 446 580 (10) 3j/ .925 05 2 1.91 122.72
59.164 215 (10) 7- 1. 526 3 0 1.81
59. 590 978 (10) 5+ 1. 341 0 . 1.83

5 --------- --------60.306 044 (10) 5 1.348 7 1. 83 Doublet
60.434 776 (10) 7 1.562 6 1.81 128.74-- - -- 5-- 65-------- --------

25 61.150 565 (5) 9 1.589 9 * 1. 81
61.800 169 (10) 11+ 1. 458 8 1. 81
62. 411 223 (10) 3f7-f 1.227 2 i. 81 Doublet
62. 486 255 (10) / 3/ .963 36 1.91 75.03
62. 998 00 954 01 1.81

30 63. 568 520 (10) 17+ .689 7:6 1. 81
64. 127 777 (20) 19+ .465 60 1.81
64. 678 92 21+ .294 21 1.81
65. 224 120 (20) 23+ .174 37 1.81
65. 764 744 (20) 25+ .097 074 1. 81

35 66. 302 06 27+ .050 820 1.81
66. 836 77 29+ .025 041 1.81
67. 369 51 31+ .011 621 1.81
67.900 73 33+ .005 083 1. 81
68. 430 8 35+ .002 096 1. 81

40 68. 960 1 37+ .000 815 1. 81
69. 488 7 39+ .000 299 1. 81
70. 016 9 41+ .000 104 1. 81
70.544 9 43+ .000 034 1.81

44 -- 750 34-3 (10) -.597-25 2. 13 Isolated
Line
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D-Doublet (Table 7)
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Figure 6 - 8. Computer plots of the pressure-broadened 0 2 Microwave Spectrum for sixdifferent pressures (10 to 760 torr) corresponding to altitudes between h3760 torr

and 0 km. The model of linear addition of individual Lorentzians was used

c 0 0

(T =3000 K, yo = 1.6MHz/torr).
i

For analysis of atmospheric conditions see Figures l4 through 17.



/ T=298K

60 Pure 02 / T=298K

E 760 torr

Cn

"040- 620 "

o/ 3 3040

S20 .

55 60 65
Frequency, GHz

Figure 9. Attenuation of oxygen between 54 and 66 GHz at four dif-

ferent pressures.
Solid lines: Linear addition of Lorentzians (see Figs. 6-8)

using Mingelgrin's width parameters (Table 6).
Dashed lines: Scattering calculation by Mingelgrin (1972).

38



Table 8. Shape Function for an Isolated Spectral Line

Line Profile Broadening Mechanism Refraction Spectrum Extinction Spectrum

LORENTZIAN Pressure p F'= ( 1 F"- 1 1

(Collisions)

(See Fig. 4) o "Frequency" z = (v -v)/

VOIGT Convolution between

Gaussian and e -(x' )a -(x' )2

Lorentzian v(x, y)=S (X (xx) dx' u(x, )=f (x-xl'  d xv(x-x') 2 + yG u (x-x')+ yd

"Frequency" x = (V)/D

(See Fig. 10, "Pressure y
y # 0) y = /TD

GAUSSIAN Doppler Effect due to T -n2

(Velocity distribution). F' = 4n exp[n2x2 exp (x') dxF exp[ -lnZx2 f exp (x') dx'

Doppler width, T D o

= (v / c) 42 kT/ M
(See Fig. 10, F" = exp (-n 2 x )

y = 0) M - molecular mass Dawson' s Function(a) 7D

(a)
Miller and Gordon (1931).



II

I I

0u Lfl
I 0

'OO
--

Figure 10. Normalized Voigt profiles for dispersion v(x,y) and
extinction u(x,y) (Faddeyea and Terent'ev, 1961). The
mathematical functions are given in Table 8.
"Frequency" x = (v0o- v)/'YD , solid-line curves.
"Pressure" y = ,o P/D , dashed-line curves.
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and line half-width (y) for a Voigt profile. Also

shown is the normalized amount of I An . The
ordinate is in normalized pressure units (y).
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Figure 12. Pure water vapor attenuation as a function of the vapor pressure for two different

temperatures at 61. 16 GHz, and at 30.58 GHz.



3. COMPUTER ANALYSIS OF ATMOSPHERIC PATH MODELS

3. 1 Homogeneous Path Transmissivity at Various Altitudes

Before applying theoretical results of Section 2 to actual atmos-

pheric conditions, it seems appropriate to establish their validity. A

serious test of the theory is possible by comparison with experimental

results of sufficient accuracy which in turn can only be obtained under

controlled laboratory conditions.

The 0 2 Line Spectrum

One experiment yielded quantitative attenuation data for eight

isolated lines around 60 GHz (Stafford and Tolbert, 1963) and the single

line at 119 GHz (Schulze and Tolbert, 1963). The conversion of peak

attenuation Ca and linewidth y° to a strength parameter (Eq. 11) is

accomplished by means of (Eqs. 2, 18)

S' = 5493 a y 0/ [Hz/ torr] (30)

where vo is in megahertz (from Table 7). This is illustrated by the

tabulation below

N± (a Y T S S0  (/So ) -1
o Th Th

02 (Air) Exp. Table 7 Exp. (Eq. 11) Exp. Table 7

[dB/km] [MHz/torr] [OK] [Hz/torr] [%]

(±12.2%) (±5%)

9- 7.58 D 1.39 1.76 310 .993 1.406 -29 ? -10

3+ 4.73 1.74 1.86 " .774 .846 - 9 - 2

7- 6.50 1.43 1.76 " .864 1.407 -38 ? -24 ?

5+ 5.94 1.61 1.78 " .880 1.230 -29 ? -21 ?

5- 8.58 1.86 1.78 " 1.46 1.237 +18 ? +12

7+ 8.63 1.62 1.76 " 1.27 1.441 -12 - 4

9+ 8.85 (1.97) 1.67 1.76 " 1.33 1.475 -11 - 5

11+ 7.70 (1.97) 1.46 1.76 " 1.00 1.366 -27 ? -11

I- 6.50 (1.60) 1.99 2.07 300 .598 .597 0 + 3

9+ (Eq. 20) 1.81 300 1.59 1.5899 0

43



The difference between S ° and S'Th is for five lines larger than

the combined experimental uncertainties. The fit improves when the

linewidth parameters of Table 7 are applied. The discrepancies are

probably due to insufficient control of experimental conditions, incor-

rect assumptions in reducing the data to 310°K (u= w= 2 !), and baseline

(a = 0) problems. This, together with our experimental results for the

9+ line (Eq. 20), leads us to believe that the theoretical line strengths

are valid as given by equations (7), (11), (12), and Table 7.

The other important parameter of the isolated 02 line spectrum

is the correct width. Ab initio calculations of y°(300) by Mingelgrin

(1972) and Dillon-Godfrey (1972) are sensitive to the intermolecular

potential parameters which are obtained from data unrelated to the

O2-MS. Results from both theories differ by about 20 percent as do

the experimental values (Table 6, Fig. 5). Confidence in the measured

y7(9 + ) parameter (Eq. 20) and support by other experiments of an

N-dependence for the width (Fig. 5), made us use the 1. 81 MHz/ torr

value to "calibrate" the Dillon-Godfrey widths.

The atmospheric transfer function versus frequency above an

altitude of about 25 kilometers resembles a string of individual 02-MS

line s. The analysis of the 0 2 line spectrum seems to be in fairly good

shape. Uncertainties are connected with the width parameters

Y , md, u, m , and v (Eq. 19) for other lines than the 9 . Further

experimental work with the dispersion spectrometer (Liebe et al., 1973)

will hopefully provide the missing information. A guide to treatments

of the line spectrum in this report with respect to practical applications

can be found in the overview on the next page
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Guide to Treatments of the Atmospheric Oxygen Line Spectrum (h > 25 km)

Altitude h > 25 km > 40 km > 60 km
Line Broadening Pressure p Magnetic Field H Temperature T
Line Shape Lorentzian Lorentzian - Voigt Voigt

Eq. Table Fig. Eq. Table Fig. Eq. Table Fig.

Transfer Fct. r 1, 2 6, 17 1, 2 18, 19

Refract. Index n 4, 18 4 4 10, 11

Line Centers v 6 2, 7 14 5 14 5o
Strengths So 7, 11 3, 7 2 15 5 15 5

Temper. Fct. 9 12, 13 4 3 12, 13 12, 13

Shape Fct. F 17 4 10 8 10

Widths 7 19 6, 7 5, 13 19 7 13 25 13



The complete 02-MS and detailed insight into its transfer pro-

perties require a good deal of theory. Therefore, it is important to

test theoretical results by as many reliable experiments as possible.

Interesting properties of isolated lines are their markedly

different temperature dependence s. The peak attenuation a varies

approximately as (Eqs. 2, 13, and 18)

a ~ (T / T) (31)

Looking at Table 4 and assuming u= 0. 9, we find that a0 of the two
0

N= 15 lines is almost independent of temperature and thus a good

candidate as an atmospheric pressure sensor (from a satellite). One

can also pick lines with inversely linear (N= 11) and square-law (N= 3)

dependences as well as linear (N= 15), square-law (N= 23), and higher

order temperature dependences. The high rotational lines are very

sensitive functions of temperature (Waters, 1973). For example, a

1 percent (+1. 8 K) raise at 280 K produces for N= 27 lines a 3. 5 per-

cent increase in ao, and at 220 K the increase is even 5. 1 percent.

The 0 2 Continuum Spectrum

One early experiment (Artman and Gordon, 1954) provided

attenuation data (+ 10 percent) at 25 frequencies between 52 and 61 GHz

under controlled laboratory conditions (p= 76 0, 380, 190 torr;

T = 300"K). Several workers (e.g., Meeks and Lilley, 1963;

Westwater, 1970) used these data, different line shape functions, and

theoretical line strengths to deduce the pressure-broadening line

parameters. It was found that the isolated width parameter (assumed

equal for all lines) needs to be reduced by 30 to 50 percent (see Eq. 12)

to fit more or less the continuum spectrum, and in all cases it was

stated clearly that future laboratory measurements are needed to

46



remove the encountered uncertainties. Since such experiments have not

been reported up to now, we have had to rely upon measurements made

in the atmosphere.

Results of field measurements contain information not only

about the 02-MS but also about the structure of the atmosphere. Many

of the uncertainties in present knowledge of the transfer function cannot

be distinguished from uncertainties in pressure and temperature distri-

butions which makes field data an unsatisfactory alternative to laboratory

measurements.

Once the 02-MS is completely understood it is an easy task to use

spectroscopic properties as a probe of (dry) atmospheric conditions. Right

now, however, we have to content with an empirical linewidth model

introduced by Meeks and Lilley (1963) which determine s the individual

width from (y.i applied to all lines except the 1 )

Yi (p) a G(h) (p/ 760) (300/ T) u  and (32)

22
Yi (h) Y y (p ) + YD (33)

Carter et al. (1968) and Reber (1972) measured oxygen attenuation of the

atmosphere by the zenith angle technique using the sun as a source.

Their ground level results are given in Table 10. Carter et al. accom-

plished a + 8. 8 percent fit (squared deviations) to their data which

include airplane measurements (taken between h = 2. 6 and 12. 2 kmin) by

the following scheme for G(h):

h G(h) u p y.0 (300)

[km] [MHz] [torr] [MHz/torr]

0 to 8 640 0.85 >180 0.84

8 to 25 640 to 1357, linear with h " - -

> 25 1357 " <20 1.79
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With these values, equation (32) becomes the "CMR-Model" which is

used for the analysis described in the remainder of the report.

Another approximation, equation (33), is introduced to take care

of the transition to Doppler-broadening (Section 2. 4. 3). The Lorentzian

shape is assumed for the vanishing 02-MS, and the transition to a

Gaussian shape (Voigt profile) is not done. At h = 50 km this approxi-

mation was found to be indistinguishable over the strongest 90 percent

of a line from the more correct Voigt profile (Waters, 1970). Equation

(33) is sufficient in the context of analyzing cumulative effects through

the atmosphere (Sect. 3. 2), but for a calculation of the line profile over

a homogeneous path above h = 60 km the Voigt profile has to be applied.

3. 1. 1 Analysis of Attenuation and Dispersion for Dry Air Between
49 and 72 GHz.

The analysis includes all lines with rotational quantum numbers

N= 1 to 43 (Table 7), which omits lines with strengths less than about
-5

2. 10 of that of the strongest line. This cutoff is sufficient even for

computations of transmission over long paths. The assumptions made

for the computer analysis of homogeneous attenuation and dispersion

rates (Eq. 2) were:

(a) The U. S. Standard Atmosphere (1962) models the distribu-

tion of pressure p and temperature T versus altitude h.

(b) The atmosphere is dry, pw = 0.

(c) The sum of 44 0 2 lines (Eq. 4) is the only source of attenua-

tion and dispersion over the frequency band considered.

(d) The intensity distribution of each line is a Lorentzian (Eq.

(Eq. 17), and the theoretical strength values (Table 7,

Eqs. 7, 11, 12) are valid.

48



(e) The individual widths are the same for each line. They

are given by the "CMR-Model" (Eqs. 32, 33) whose

approximate (empirical) nature provides at best analytical

estimates of transfer properties. The altitude dependence

of the width is shown in Figure 13.

Results of the calculation are given in Figures 14 through 19. Only the

graphical presentation provides an overview of the structure of the

transfer function at different altitudes. Numerical results (computer

print-outs) for any given set of conditions are available upon request.

At h= 0 km, figure 14 shows a continuum spectrum (II). The

envelope is not a sensitive function of the width parameter:

(1) y' = 0. 876 MHz/ torr plus arbitrary variations of ± 25 percent (CMR-

Model); (2) y0 = 1. 27 MHz/torr, a value obtained by Westwater from

fitting Artman and Gordon' s (1954) data. Atmospheric attenuation for

sea level conditions was reported at 21 frequencies between 40 and 120

GHz (Thompson, et al., 1972, Fig. 3).

At h = 10 and 20 km, figures 15 and 16 show a mixture of

continuum (II) and line (I) spectra. The influence of the width become s

more pronounced as the lines gain identity. At h = 30 km (Fig. 17),

we have a pressure-broadened line spectrum.

At h = 50 km, figures 18 and 19 show the effects of Zeeman

splitting of two individual (9 + and 27-) lines. Figure 18 gives changes

in transmissivity for the case of linearly polarized radiation. Each of

the 19 1r- or 38 a-components (Eq. 14) is treated as a pressure-

broadened line of Lorentzian shape (Eq. 17) with a width determined

by equations (32) and (33). The line strengths are calculated using

equation (15). The contributions from each Zeeman component are

summed up over frequency (Eq. 4). The 9 + line widens under the

influence of H = 0. 53 gauss while the peak attenuation is reduced by
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20 to 36 percent, respectively, for the T - and.a -envelopes. The

a -envelope -'splits for circular-polarized radiation depending on the

orientation.,. The.two halve s are shown in the, example_ for the 27 line

in figure-19. _The individual Zeeman components arenot resolved in

both cases. A consequence of the Zemgan .ffect .,s.that a-bove h240 km

the atmosphere, be,comes a medium with polarization -dependent aniso-

tropic .transfe- pr.operties.. , -

-"The evaluation of a practical case requires the,dete rmination of

the type-of..polarization fo.r the propagating.radiation. The ne:t step is

to define the Prientation between the direction of,.H and the microwave

field component ,. Lenoir' s (1?68) transfer function in tensor form

doe-s this in general form for geomagnetic coordinates. Grpom (1971)

discussed 24, possible "pure" constellations between H and _ for the ,

case. of.emi.ssion-from the. 1 line.whe e takes the role of the radio-

meter antenna .polarization.,

The simple Zeeman pattern of the 1 -and 1+ lines eases

considerably the intprpretatiqn of emission (attenuation) measurements

in.the vicinity. of thse. lines. . Such emissions .can be picked up,from

satel lite -bo r,-:radiometers and.the.n conyerted to me sospheric,tempera-

ture structures and magnetic, field, (H) data. on, .global 1ba.sis (-Lenoir,.

1968,;-,Cqom,, 1971,).. At these heights-,the L +line is.wellisolated from

its. 15,l.-satellte. I The. ,ppak attenuifation:of both lines (Eqs.1 .. 7, 18,.

and able. -7) have: for-:T. = 30 0 ,-K the. values .r . : .

a-. (1+) " 351and a. -(1-) l36l:'dBfkm-] ,V .j
0 0

Crb '(Yl '97'1 f fe's "t 2 -98o Ri 1 2' g a vae (a ' =- )8 BIk
which irs wrr.ong- csin_ e-the ovear-.ap, ,re dirked ewidth, (-hFq., 3 2) was -sed, , At
288°K we calculate 1. 54 dB/km (Eqs. 2, 11, 12, 18, 19, and Table 7).
This error reduce s the -:e nithC'tteri-'ation, w.1idi should bed-"closer to
A 0 (l 7).,110,- dB .(0.7 ._l5 • 100 , km rin stead of 26- dB as given y Fpm.
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Figure 13. Linewidth y. (same for alllines of 0 -MS) versus altitude h and pressure p as

obtained from the CMR-model (Carter et al., 1968).
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The intensities of both lines differ by about 1 to 4, but technology at

56 GHz (1+) is more advanced. The NIMBUS 5 radiometer, for

example is working well in space at 60 GHz (D. Staelin, private com-

munication, 1973).

3. 1. 2 Phase Dispersion Between 10- and 140- GHz

While attenuation (or emission) is the subject of all papers

dealing with applications of the 0 2-MS, data on phase dispersion are

not readily available. In general, the complete transfer function

T (c, 0) (Eq. 1) is required for an evaluation of atmospheric limitations

imposed on system performances. The phase term has particular rele -

vance for broadband communication and for various disciplines of micro-

wave measurements. For example, phase dispersion limits the useable,

phase-coherent channel bandwidth of a broadband system (Morgan and

Ekdahl, 1966); propagation delay and its fluctuations determine the

accuracy of clock synchronization via satellite (Levine, 1970), the reso-

lution of long-baseline interferometers (Schaper et al., 1970), the

accuracy of radio range measurements (e. g., Thompson, 1968), etc.

The atmosphere delays radio signals causing an apparent

increase AL in the geometric path length L. The propagation time

t = ( L + AL )/ c [s] (34)

is determined for refractive indices n' > 1 by the phase velocity c/ n'

and for n'< 1 by the group velocity cn'.

The case n'< 1 exists for the 0 2-MS only under special circum-

stances when the negative resonance dispersion An(v) of an isolated line

(Fig. 4) is larger than the non-dispersive refraction no (Section 2. 2).

This case occurs at frequencies up to several megahertz above a line

center (Liebe et al., 1973, Fig. 4), but it will not be considered in the

following discussion.

58



We define

AL = (n' - 1) dl = J [Il 10 -6 , An(v)] dl [ m] (35)
L L

where the integration is taken along the ray path. For example, the

additional electrical length of a zenith path from sea level to outer

space is typically AL - 2 meters (Schaper et al., 1970). Extreme

values of zenith path length changes due to 02-MS dispersion are only

+12 millimeters at 58. 3 GHz and -14 mm at 62. 6 GHz. The extreme

values for AL(v) from different initial altitudes are listed in Table 9.

The calculation procedure of these results will be described in Section

3. 2.

System engineers express dispersion effects of the homogeneous

atmosphere by a phase change in radians per unit distance:

A¢(v) = (r v/ c) An(v) [rad/ km] (36)

Calculations of AO over the 49 to 72 GHz range (0 2 -MS attenuation) have

been described in Section 3. 1. 1, and various examples for h = 0 to

50 km display the 0 2 -MS dispersion spectrum (Figs. 14 through 18).

It is evident that the molecular resonance dispersion extends over a

much larger frequency range. The reason lies in the shape function F'

whose wing intensity decreases withi V -I as compared to v0-Vl 2

for F" (Eq. 17 and Figs. 4, 10).

The calculations are extended to cover the frequency range 10

to 140 GHz for h = 0 and 10 km, and the graphical results are shown in

figure 20. The dispersion of the 22 GHz HZO 0 line puts a "wrinkle" into

the dry air phase response. At h = 0, we calculate (Eqs. 27, 28, 36):
-3

(A w)max = i 1. 2 .10 rad/ km per torr of water vapor at 19. 2 and

25. 3 GHz respectively, while the 02-MS dispersion over the same fre-

quency range is + 25 .10- 3 rad/km.
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The dispersion An(v) of the 0 2-MS was first calculated for h= 0

by Zhevakin and Naumov (1967). The complete oxygen dispersion

spectrum including overlap and nonresonant dispersion (Sect. 2.4) was

recently evaluated by Mingelgrin (1972), and his result at h=0 km

for v= 0 to 80 GHz is shown in figure 21. The peak value span (7. 87

ppm) of 02 translates for air into 2. 11 rad/km, which agrees well with

the value of (2) in figure 14. Another dispersion calculation for dry air

at h = 0 km was performed by Sullivan and Richardson (MITRE, 1965).

They predicted a dispersion of 0.4 ppm between 45 and 90 GHz while

our calculated value is 0. 381 ppm. A broadband system operating on

the ground close to the 02-MS attenuation band, e.g., in the 45 or 75

GHz bands, does experience phase dispersion on the order of ± 0. 03

rad/ km per gigahertz.

Dispersion measurements are difficult in the laboratory because

the small effect is heavily masked by instrumental instabilities. A few

measurements have been made in our laboratory using a differential

microwave refractometer (Thompson and Vetter, 1968) similar to the

one described by Liebe et al. (1973). The difference of the refractivity

at 26 and at (26/ 3) GHz was measured at 610 torr and 300°K in dry air

to be 0. 12 ± 0. 03 ppm (M. J. Vetter, private communication, 1968). The

calculated value for the same conditions is (0. 394 - 0. 261) = 0. 133 ppm.

In another experiment we measured the difference in refractivity

between 23. 6 and (23. 6/ 2) GHz (Liebe, unpublished results, 1969). In

dry air from p = 50 to 600 torr at 300 OK, the following result was obtained

(1. 25 +0. 3)- 10-4. p, while the calculated response is

(6. 03-4. 55). 10- 4 p = 1.48- 10-4 .p [ppm/torr].

These two experiments provide a rough (+ 25 percent) confirma-

tion of 02-MS dispersion outside the 60 GHz attenuation band where the

dispersion is nearly independent of the widths y (Eqs. 19, 21).
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Atmospheric refraction limits the accuracy of such systems as

electronic distance meters and tracking radars. The measurement of

distance is based on determining the propagation time t (Eq. 34),

whereas the deviation of the vertical tracking angle is proportional to

the gradient dn' / dh. These errors can be reduced if pertinent atmos-

pheric parameters of the propagation path are known. The dispersion

of the 0 2-MS offers a means of evaluating the refractive index n' of dry

air averaged along an atmospheric path. Systems operating at two

(or more) phase-coherent frequencies can extract path conditions from

the difference in phase shifts experienced by the signals when travelling

the same path (MITRE, 1965; Thompson, 1968; Liebe, 1969b).

The potential of a differential phase measurement is analyzed

for signal frequencies in the wings of the 0 2 -MS. Two different sig-

nal pairs are chosen for short and long operating ranges in the following

example

Master Multipl. Signal Phase Temperature Pressure Operating
Frequ. Factor Freq. Difference Sensitivity Sensitivity Range

X v of ¢ of ¢ L

At 20 0 C, (20 + 20) °C (600±200) as*40 dB
760 torr See Fig. 22 torr

[GHz] [GHz] [rad/km] [rad/km'K] [rad/kmtorr] [km]

-3 -4 <
11 5 55 1.93 -11.8- 10 9. 3- 10 10

11 6 66

10.2 5 51.0 0.98 -4.3 * 10 4 7 10 - 4 100
10.2 7 71.4
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The phase shifts 01, 2 experienced by each signal over a path length L

are (Eqs. 35, 36)

-6
0 = [ 2 v(1 + N. 10 )/ c + LA(v )] L

and (37)-6
02 = [2nv (1 + N.10 -6)/c - LA(v2)] L ,

when the signal frequencies are chosen so that I AO(v)I I )

(see Fig. 22) and N is the refractivity averaged along the path. The

averaged refractivity can be separated into a "drv" and a "wet" term,

N=NN+N
d w (38)

Assuming (a) a straight line-of-sight ray path (no reflections or

bending), (b) a perfect correlation of time -varying phase changes

(mainly due to water vapor density fluctuations), and (c) a common fre-

quency 7=(V 1 + v2)/ 2 (e. g., by heterodyning vl and v Z and then multi-

plying each IF by the opposite factor X) one can measure at the receiving

end the difference

1 - 6 = OL ={A 1 (v) +IA(v) I}L [rad] (39)

and the sum

- -6
a1 + a2 1 r (1 + 2) (1 + N 10 ) L/ c [rad] (40)

The 0 2-MS dispersion ¢ can be tabulated in terms of dry air density,
3

Pd = 464 p/ T [g/m 1. Approximate pressure and temperature

sensitivities are listed on the previous page. For the path length L,

first the uncorrected value can be used with some possible later iter-

ations. Thus the value pd found through a measurement of 0 determines

the dry term refractivity (Eqs. 5, 39)

Nd = 0 . 2 2 3 pd [ppm] (41)

62



Table 9. Extreme values of zenith phase dispersion AT and electrical
path length change AL(v) with associated frequency v and
attenuation Afor different initial altitudes, h i (CMR-Model).

Number of Maximum Value s Minimum Value s
h i  See Integrat.

Figure Layers AT A L(V) v A A L(V) V A

km rad mm MHz dB rad mm MHz dB

-18.3 -13.9 62580 160
0 25 151 14.7 12.0 58260 179 (-11.9) (-9.4) 60500 (216)

-13.4 -10.2 62540 119
5 27 101 11.5 9.4 58280 130

(-10.4) (-8.2) 60480 (177)

-9.2 -7.0 62520 81
10 29 81 8.5 6.9 58300 94 (-8.4) (-6.6) 60460 (143)

15 31 71 6. 1 5.0 58300 56 (-6.3) (-4.8) 62500 (621)
-6. 5 -5. 1 60460 113

20 33 61 4.5 3.7 58320 30 (-4. 3) (-3. 3) 62500 (36)
-4. 9 -3. 8 60440 65

25 35 56 3.6 2.9 58320 14. 3 (-3.0) (-2. 3) 62500 (19)
-3. 9 -3. 1 60440 27

(-2. 0) (-1. 5) 62500 (8. 8)
30 37 51 3.0 2.5 58320 5.5 60440 152

-3. 2 -2. 5 60440 15
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The wet term refractivity N originates from the water vapor
w

within the path. With equation (5) and pw = 288. 8p w/ T g/ m 3] one

obtains
3-

Nw . 73 10 - p w / T [ppm] . (42)

It is possible to solve for the average water vapor density along the

path, p using the measured sum of phase shifts (Eqs. 40, 38, 41, 42).

The proposed measurement principle offers the potential to

follow air and water vapor density fluctuations separately in real time

as they occur as spatial averages along a line-of-sight path. This

information is also a wanted correction term (Eqs. 34, 35) for radio

distance measurements.

3. 2 Slant Path Transmissivity

3. 2. 1. Calculation Procedure and Critical Comments

Computations of non-turbulent transfer properties through the

first 100 kilometers of the atmosphere depend on the exact functional

form of a(h) and A0(h) [Sect. 2], on the model atmosphere which deter-

mines p(h) and T(h) [U. S. Stand. Atm. 1962], on the mixing ratio

distribution rk(h) [Fig. 23], on the ray path geometry [Fig. 24], and

on the refractivity distribution N(h) [Eq. 5]. Cumulative transmissivity

along a ray path is defined by

A = J a(1) dZ and AT = A (L) dA , (43)

h. h.
1 1

where di is the increment of the ray path and h. is the initial altitude.
1

The atmosphere has only a weak dependence on geographic coordinates and

in the first approximation it can be considered as a layered homogeneous

medium which does not change with time. The numerical method used

for the evaluation of equation (43) consisted of assuming a spherically
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stratified atmosphere which was divided into slabs of thickness Lh. The

altitude increments Ah were chosen so that each layer was quasi-

homogeneous (Ap < 10 torr and/ or AT < 5 0 K across each slab) amounting

to a number of n = 151 for h = 0 to 100 km (see Table 9). Attenuation a

and dispersion A were calculated for each slab as described i,L Section

3. 1. 1. The clean, dry atmosphere sustains a constant mixing ratio up

to h >90 km for all gases which might have a measurable (r k > 10 )

influence upon transfer properties (Fig. 23). An exception is ozone

(and possible air pollutants), which is discussed briefly in Section 3. 2. 3.

The correct evaluation of a path trajectory would include refractive ray

bending commonly expressed by Snell' s law (e.g., Blake, 1972). The

effect is most severe for a horizontal starting angle (6 = 90') defining a

tangential path and is zero for a vertical starting angle (6 = 0) defining

a zenith path. We assume a straight line slant path with the increment

d (6) AL (6) determined by the algorithm given in figure 24. Finally,

a numerical integration based on Simpson' s rule was employed to com-

pute the integrals of (43); i.e.,

A - E 0. 5 (O. + a A) a(6)
n n n+1 n

(44)

AT -E 0. 5 (An + LO n+ ) A n ( )
n n n+1 n

A word of caution regarding these calculations should be noted

at this point. Results obtained by the method described above can only

qualify as analytical estimates allowing an overview on altitude -

dependent transfer properties of the 0 2-MS. The following key-words

underline the approximate nature: (a) empirical linewidth model, (b)

straight line ray path, (c) numerical integration, (d) neglect of water

vapor, (e) neglect of temporal variations of p and T, and (f) a more or

less representative model atmosphere. The climate dependence of the
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0 2 -MS is not too strong. The attenuation peaks of A , for example,

decrease by about 10 percent in a tropical climate and increase by

about 20 percent in an arctic climate when compared with results

(Figs. 25, 17) for the U. S. Std. Atm. 62 (Reber et al., 1970). Values

for A and AT are, however, consistent in themselves, and the spectra

could be scaled to results of reliable experiments.

3.2. 2 Zenith and Tangential Path Transmissivities Between

49 and 72 GHz at Various Altitudes

A computer program was developed for evaluations of equation

(44). The routine was tested for the two extreme (zenith and tangential)

cases of a slant path. We present examples of results in the form of

computer plots in Figures 25 through 39. The print-outs are too lengthy

for reproduction here, but Table 11 gives an example of the format.

Such listing can be made available upon request for any given set of

variables. The path transmissions between a given initial altitude and

outer space are obtained by summing the contributions of 44 02-MS

lines, integrating over height, and finally integrating over frequency.

For example, the computation of the results shown in figure 25 require

for frequency increments of 20 MHz about 23. 106 individual calculations

to cover the 49 to 72 GHz band which takes about 5 minutes on a CDC

3800 machine.

The zenith path spectra are labeled by the initial altitude hI
which was varied between h = 0 and 30 km in increments of 5 km. The

tangential spectra are calculated for a straight-line path through the

total atmosphere (satellite -to-satellite) and they are labeled by the

height ho, marking the closest approach of the tangent to sea level.

Factors that determine tropospheric path loss are not only molecular

attenuation but also stratification and path geometry which can introduce
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multipath, diffraction, and ground reflection effects. To avoid con-

sidering these problems, we limited ho a 5 km. The peak values of a

zenith and a tangential path for h i = ho differ by about 1 to 30. The

tangential spectra were extended to ho = 50 and 75 km (Figs. 38, 39) to

gain insight into the problem how deep a satellite -satellite link can

penetrate the atmosphere. At these altitudes there is still appreciable

attenuation at the line centers due to the long path length, but in between

are many "clear" channels with bandwidths on the order of 400 MHz.

A few experimental results are available on zenith attenuation

from h = 0 (Table 10). Carter et al. (1968) also reported some aircraft

measurements for different altitudes between hi = 2. 6 and 13. 7 km.

Their data points for h I = 9. 1 km are shown in figure 29. Figure 25

illustrates the degree of agreement obtained between experiment and

the CMR-Model analysis (Eqs. 32, 33) which is on the order of + 10

percent. Table 10 gives the numerical values.

Reber (1972) published recently more extensive data for A on both

side s of the 02-MS (Table 10). Special care was taken to eliminate

water vapor attenuation, being typically on the order of < 1 dB total at

zenith. The dry air data were fitted by yet another linewidth model

(R-Model) which consists of a two-piece linear pressure dependence for

the width y of the 60 GHz line complex excluding the 1 line --

Range 1, y < 52. 7 MHz,

y = 1. 88 p (300/ T) [MHz]
(45)

Range 2, y > 52. 7 MHz (pl = 20. 7 torr at T = 222 °K),

y= 52.7 + (1, 88/ 3) (p-p 1 ) (300/ T) [MHz]

We substituted the R-Model (Eq. 45) into the computer routine and, as

expected, got a good fit to the Reber data. Both empirical width models

(Eqs. 32, 45) are a somewhat arbitrary discription of an intensity dis-

tribution which deviate s from a linear addition of individual shape s.
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The experimental zenith data (Table 10) strongly suggest overlap effects

in the 02 continuum spectrum (Sect. 2.4. 1), especially when compared

with A-values which have been calculated using the pressure -linear

linewidth model (Eq. 19). The experimental values, however, are only

wing data and as such not really representative of the 0 2 continuum

spectrum.

Center data cannot be obtained by the radiometric technique

since the band between 55 and 65 GHz is practically opaque for any

source in space. Reliable experimental information on the pressure

dependence of the intensity distribution of the 0 2 continuum spectrum

can be obtained by a controlled laboratory experiment. An analysis of

continuum data is based on the accurate knowledge of the 0 2 line spec-

trum and overlap effects as shown by the theoretical treatments of

Mingelgrin (1972) and Dillon (1969).

The 0 2-MS offers between 55 and 65 GHz one feature not found

at any lower frequency; namely, high attenuation and phase dispersion

values related to the fairly stable dry part of the lower atmosphere.

This affords shielding of satellite-satellite links against ground inter-

ferences. The first 100 km of the atmosphere present a fairly com-

plicated "natural" filter which can be used to advantage in special

system applications. The strong frequency dependences of A(c) and

AT(A€) permit frequency diversity techniques and signal preprocessing

such as phase-keying. Figures 25 through 39 demonstrate that the

atmosphere, which is opaque close to sea level, becomes transparent

at higher altitudes in 16 channels each possessing a bandwidth of several

hundred megahertz. One such channel is centered around 58. 8 GHz, and

for a tangential path geometry the loss due to the 0 2 -MS varies as

follow s
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h [km] 5 10 15 20 25 30 50 75
0

At [dB] 5240 2760 835 203 46. 5 9. 8 .54 1. 5*10-4

The curves presented in figures 25 through 39 for cumulative trans-

mission and zenith ray path properties are for one-way radio communi-

cation cases. The distinction between the highly-structured line spec-

trum (I) and the smooth continuum spectrum (II) can clearly be made

within each cumulative spectrum.

Aircraft can communicate with one another or with satellites

between the 0 2-MS lines when flying above 10 kilometers while being

shielded against the ground. Several atmospheric channels might be

combined to increase the bandwidth by means of frequency transposition.

The cumulative phase dispersion, AT, in the pass band centered at 58. 8

GHz varies for a zenith path from -5. 7 rad per 350 MHz at h I = 15 km,

to -4. 5 rad per 680 MHz at hl= 30 km.

3. 2. 3. Some Spectroscopic Properties of Ozone and Other
Minor Atmospheric Gases.

The mixing ratio for the main constitutents of clean, dry air is
> -5

constant up to h > 90 km for all rk a 10 (Fig. 23). Several minor

constituents and gaseous pollutants exhibit, in addition to 02 and HZO,

spectral lines over the 40 to 140 GHz band (Table 12). These lines are

part of rotational spectra due to molecular electric dipole moments.

Linear rotor molecules (N 2 0, CO) exhibit an almost harmonic spacing

of lines, while asymmetric rotors with three different principle moments

of inertia (H 2 0, SO2, NO2, CH 2O) display an irregular line pattern.

Although the absorption coefficients of electric dipole transitions are

considerably larger than those for 02, these spectra are of no impor-

tance to transfer properties of the lower (h< 20 km) atmosphere.
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Trace concentrations and strong foreign-gas-broadening essentially

"wash-out" the se resonance s.

Ozone is practically the only molecule which causes some con-

cern. The line shape is altered according to the manner in which the

gas is distributed throughout the atmosphere. The increase of the 0 3 -

mixing ratio with height produces line profiles of several megahertz

width. Waters (1970) calculated 48 0 3-lines between 39. 426 and

142. 172 GHz of which 14 lines are masked by the 02-MS. The 7

strongest 03 lines are listed in Table 12, and the maximum values for

the total zenith attenuation indicate that the vicinity of these lines pro-

bably should be avoided by ground-to-satellite links. On the other hand,

one could "tune-in"on these resonances and use phase or amplitude vari-

ations of a transmitted signal as tracer for high-altitude ozone activity.

3. 2.4 Atmospheric Noise Due to Molecular Attenuation.

Atmospheric noise reaching an antenna as a function of orienta-

tion and frequency is, as derived from radiative transfer theory, an

integral over the temperature T(Y) and the attenuation rate a(a) along a

ray path (see Sect. 3. 2. 1). A ground-based antenna "sees" the noise

temperature (e. g., Blake, 1972)

TA = I T(1) a(£) exp. [-Y a(s) ds] dI [oK] . (46)
o o

The tropospheric 02-MS attenuation between about 55 and 65 GHz is so

high (opaque atmosphere), that most of the noise originates from the

lowest layers. The noise temperature equals approximately the surface

temperature since the integrand of (46) is large at Y = 0 and rapidly ap-

proaches zero for e>0. At the band edges of the OZ -MS, the atmosphere be-

comes semi-transparent, and TA starts to drop when 30 dB (Eq. 43).
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Figure 24. Algorithm used for the calculation of the differential slant
path length Al between two shells of a spherically strati-
fied atmosphere. e - starting angle against zenith (n = 151
for h= 0 to 100 km).
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Table 10. Zenith Oxygen Attenuation A from Sea Level.

Measured Values Calculated Values

Frequency No. No. of RMS- R -  CMR - a) Linear

V in Samples Error Model Model Model

± 1 MHz a) Fig.25 6A A A A A

[GHz] [%] - [dB] -

50.000 W 1957 2 - 15 1.3

R 1972 228 7.1 1.12 1.26 1.55 3.17

50. 200 R " 130 9.9 1.31 1.33 1.64 3.36

50.700 R " 120 6.3 1.58 1.57 1.92 3.90

51.250 R " 226 12.6 1.98 1.93 2.35 4.67

51.750 R " 7 638 11.1 2.43 2.41 2.91 5.62

52.220 R " 171 4.8 2.92 3.07 3.67 6.81

52.500 SW 1969 6 33 z20 5.1 3.73 4.37 7.76

53.400 CMR 1968 1 125 5.2 7.16

R 1972 123 3.0 7.06

53.500 SW 1969 6 8 :20 9.3

CMR 1969 110 6.7 7.82
7.74 7.82 13.0

R 1972 60 4.0 8.05

R 1972 43 2.9 7.84

53.811 CMR 1968 1 129 5.4 10.20
9.37 10.52 15.33

R 1972 120 5.9 9.59

54.352 CMR 1968 1 26 1.4 15.39
CMR " 1 57 2.8 15.62 14.53 15.98 21.17

R 1972 44 3.9 13.91

54.895 CMR 1968 1 50 5.6 23.35
2250 24.35 29.57

R 1972 20 4.1 20.89

66. 056 R " 122 7.3 8.61 8.92 10.25 16.00

66.565 R " 43 0.5 6.23 6.28 7.37 12.46

67.016 R " 230 6.3 4.64 4.79 5.71 10.21

67.696 R " 144 4.2 3.08 3.36 4.09 7.82

68.144 R " 7 402 5.1 2.58 2.79 3.42 6.71

68.680 R " 81 3.0 2.04 2.31 2.85 5.70

65 to 69 TS 1963 3 - - 18 to 2.8 - -

69.216 R 1972 154 13.5 1.71 1.97 2.43 4.92

69.732 R " 81 7.7 1.46 1.71 2.12 4.33

70.0 C 1958 4 - 16 1.9 1.62 2.00 4.07

70.260 R 1972 7 447 10.2 1.37 1.51 1.88 3.85

72.0 H 1964 5 - 25 1.45 1.08 1.34 2.75

a)W - Whitehurst et al., 1957 TS - Tolbert and Straiton, 1963

R - Reber, 1972 C - Coates, 1958
SW - Snider and Westwater, 1969 H - Hayes, 1964

CMR - Carter et al., 1968

A survey of measured values of clear sky zenith attenuation for
the frequency range 15 to 140 GHz has been made by Thompson III (1971;
Fig. 9-11).
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Tangential Attenuation CMR-Linewidth Model
Table 11. Tangential Phase Dispersion U. S. Standard Atmosphere 1962

Minimum Altitude h
o

Frequency, L 30K 23KM .... K.. .. 10K 10K 00KM O00KM.

MHz

49030 3.978+000 rad b28-002 dB 736400 rad 9.73'40-001dB 3808+i~ i;4701o0i 'Total Attenuation, dB
7.0181-003 rad I 322__ fl dB 3.5205-002 2.68.4U003dB .595-00 _3_ 577.8.-0 Attenuation Rate dB/ kmkm Kn km ath

490>0 3,5064+000 4. 6490-OJ _ .. M 1.7407+031 _ 9.7801-001. 8.4012+001 a 771U01

7.0353-003 1.3262-004 3•5 -7 -02 2.6969-003 3-.i50 9;1]- .5948-002

904i '3.5151+000 4.67060j2 . 17449+001 9.8269-001 -TOi7Ti 0 Total Phase Dispersion, rad
7.0526-003 1.332.4-=04... 3.5457-C02 _2.71.00.-003.. 1.6030-001 Phase Dispersion Rate, rad/km

49060 3.5237+000 4.6927-002_ 1.7492+001 9.8740-001.. 8.4423+001 at h o
7.0699-003 1.3387-004 3.5544-002 2.7232-0u3 -*60-a0

4908- b .5323+00 '.7152-002 1 - 5 3 + 0bi; 9.9215-0 61 -463-0; -DT- I- . 4 + rad -
7.0873-003 34 1 0.4- 3,5631-002 207365-03 1. 6 1 0 8 -' 3.6466 3, 7731-00 1,- 2

_
3

.1-_01-k-

49130 3.5411+000 4.7379-002 1. 757.3 001 9.9693-001 8.4837+a1 1.5055+001 -
7 107-J03 1.3516-004 " rT3-w-2 2.7499-003 - ;648--00 3.6641-002 3.7826 t 2.3461-001

'.9120 3.5.499+0'C0 4.7608-002 17. 621+001 1.0017+000 - .504-I+0-0 ... 1.5127+001--
7.1223-003 1,35. L-o00o . 3.583-002__ 2,7633-003 1.6188-001 .6818-002 3.7922-00 . 2.3582-001

4914 0 3.5587+000 4.7840-0 02... 1.7665+001 1.0066+000 8.5255+001 1.5200+001
7.1399-003 1.3647-034 3.56 4-002 2.7767-003 1.6228-001 3.6995-002 * 2.37 001

49160 3.5575+0C0 4.8073-002 17708+001 1.0114+000 8 -5 46~+ u0 1.5273+001 .
7.1576-003 1.3713-0 4 . . 3.59382-002 2.7902-003 1.6268-001 .. 7175-002. 3811i-001 827-001.

49180 3.5764+010 4.8309-002 1.77
5
2+0i1 1.0163+000 8.677001 1.534+001 --

7,754-003 1.3780-004 .- T-6T) 7"-'0 2.8037-003 1.63 -;DO 3.7355-002 95100

52J5 5.5 4+do0 - .48546-002 . '-9(+-11- Z.0213+000--- 18.55!+01-
7.1932-003 1.38.48-0.__ 3.6161-012 2.8173-0 03 6348-00001 3.8308-001 _.407-001

49220 3.5943+910 4.6786-002 1.7840+001 _ 1.0263+000 .6102+001 .5496001
7.2112-003 1.3916-004 3.6250-0 02 2.8310-003 3638907720-002 2.4203-001

49240 3.6033+000 4.9029-002 1,7885+001 1.6313+000 8.6316+0C1 1.5572+001
7.2292-)03 1..3_985-0.04 ___ 3.A340-002 2.8448-003 1.6430-01 3.850-001 2.4330-0017._________ ____ -_____o3 ___ _,. -o . -. -o--_ 3.7905-002 ... .___ _.3__ -

49260 3.6124+0C0 4.9274-002 1.7929+ 01 1,.0363+000 8.6531+JOi 1.5648
7,2473-003 1.4054-0,4 3-6431-002 2.8587-003 1,6471-001. 3.8091-002 2.4458-001



Captions for Figures 25 to 39

-Computer Plots -

a) Figure hl [k m ]

25 0 (sea level)
27 5
29 10
31 15
33 20
35 25
37 30

Total attenuation A and phase dispersion AT due to
the O 2 -MS between 49 and 72 GHz for a zenith path through
the U. S. Standard Atmosphere (1962) from different initial
attitudes h 1 to outer space. po and To identify the
pressure and temperature conditions at h 1
(CMR-Model foryi - Eqs. 32, 33).

b) Figure h 0 [km]

26 5
28 10
30 15
32 20
34 25
36 30
38 50
39 75

Total tangential attenuation At and dispersion ATt
due to the 0 2 -MS between 49 and 72 GHz for.a straight-
line path (see Fig. 24) through the total U. S. Standard
Atmosphere (1962) for different minimum altitudes above
ground ho
(CMR-Model for-i - Eqs. 32, 33).
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Table 12. Stronger Spectral Lines of Minor Atmospheric Gases

in the 40 to 140 GHz Frequency Band

Molecule enter Freq. Max. Absorpt. Zenith Absorpt. Ground Level Elec. Dipole

(type of Pure Gas,300
0 K (max.) Concentration Moment

rotor) A clean/polluted

[GHz [ dB/km [dB] [ppm/vol] [Debye or_ o
3. 336. l0

96.2288 426 a) .16 *) 0 to up to Asm]

101.7368 803 .30.07 3

0 110.835 1230 .4 0.53

3 124.086 1750 .5

(asymmetr.) 125.389 1030 3 to

136.883 300 at

142.172 2330 .75 h20 =
20km

*) Calculated by Waters (1970) for U. S. Standard 
Atmosphere (1962) and

daytime ozone distribution (max. 5 x 10" molecules/cm' at h = 20km).

50.2460 20 a.)

75.3696 65 )0.5 up to .167

a) 0 u

N20 100.4917 152 a)

(linear) 125.6137 282 b)

150.735 480 b)

CO 115.2712 104 b) 0.01 up to 0.112

b) to 150
(linear) 230.5380 838 b)02to 150

SO2  12 lines listed between c)0 to up to 1.615

asymetr. 53.529 and 131.015 GHz 
0.02 20

(asymmetr.

NO2  10 lines listed between ) 0 to up to 0.316

(asymmetr.) 40.358 and 41.278 GHz 
0.01 5

CH20 8 lines listed between c) 0 to up to 2.34

(asymmetr. 45.063 and 140.839 GHz 
0.01 5

02 (linear 1+ 1.56 120 (Fig. 25)

S (Table 7) 209460 Magnetic

ture) 1 6.06 110 Moment

a) Waters '(1970)

b) French (1968)

c) Cord et al. (1968)
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Equation (46) was evaluated numerically for 02 and H 0 attenuation, for

elevation angles 6 = 00 to 900 and h = 0 over the frequency band 0. 1 to

100 GHz, by Blake (1972, Fig. 102). The sensitivity of millimeter wave

receivers is not limited by atmospheric but by detection noise. Uncooled

Schottky-diode mixers, for example, exhibit at 60 GHz presently single

sideband noise temperatures on the order of 1200 K.

In radio communication, data are transmitted through the atmos-

phere in such a way that the system channel parameters are matched to

the propagation characteristics of the medium to maximize received

data; in passive remote sensing, the medium itself provides the data.

Meeks and Lilley (1963) introduced the idea of using 0 2 -MS emission to

remotely sense the temperature structure of the lower (h>30 km)

atmosphere from an orbiting satellite. Their work has been extended

by Lenoir (1968) and Croom (1971) and was applied by Westwater (1970)

and Waters (1970, 1973) to ground-based radiometric sensing. All

these treatments take advantage of microwave spectroscopic properties

of 02 and other atmospheric gases and their dependences upon frequency

and meteorological conditions, which has been the subject of this report.

Finding the temperature T(1) in equation (46) as a function of an

independent variable [e. g., p(h)] from observations of TA at selected

frequencies v requires numerical inversion methods. The reliability

of the inversion depends to a great extent on the accuracy to which

a(v, p, T, H, rk) due to the O 2 -MS is known. A general descrip-

tion of the atmospheric 0 2 -MS can be accomplished only by theory.

However, existing data are insufficient for a proper test of the available

theory. More laboratory work on the intensity distribution of the atmos-

pheric OZ-MS is required under careful control of conditions (Meeks a.

Lilley, 1963; Wilheit, 1969; Liebe, 1969b; Waters, 1970).
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4. CONCLUSIONS

The review of molecular theory for millimeter wave properties

of air, its translation into engineering terms (Section 2), the develop-

ment of analytical schemes to predict propagation characteristics on the

basis of meteorological phenomena, and the description of computer

routines together with many examples of unique atmospheric transfer

properties (Section 3) shall provide a sound basis for the development

of future systems operating in the 40 to 140 GHz frequency range.

The main emphasis has been placed on the atmospheric 02-MS

which dominates transfer properties throughout the 40 to 140 GHz band

and existing gaps in the knowledge of the spectrum have been identified.

It was attempted not to seriously violate real atmospheric situations;

however, over the full range of meteorological variables, it remains to

be established how reliable the discussed analytical schemes really

are. Presently, the correlation between atmospheric attenuation and

phase dispersion rates on one hand and meteorological conditions (Eq. 3)

on the other hand is not very accurate. The correspondence between

both sets of data needs to be improved by inputs from controlled labora-

tory measurements on isolated line parameters and continuum spectra

data. A manageable theory should be brought forward which predicts

the continuum spectrum based on properties of the line spectrum, cir-

cumventing more or less arbitrary empirical models.
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